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WHAT "FUZZY H.O.S." MAY MEAN

•Henri M. Prade*, Lucia M. Vaina*

ABSTRACT
Nýhe intended objective of this paper is the investigation of the possible fuzzy .

extensions of H.O.S. methodology. After ot brief recall of this methodology and

a detailed presentation of +he fuzzy concepts which are needed, the notion of

fuzzy data type Is ihtroduced and discussed, along with. its consequences for con-

trol maps. The general question of (fuzzy) reliability is then dealt with

I. INTRODUCTION

Higher Order Software (HOS) has been developed by Magaret Hamilton and Saydean

Zeldin [43 as a methodology for the specification of rellabl software systems.

During the time of this development, fuzzy set theory - Initiated by Lotfi

Zadeh [12] fourteen years ago'- has received more and more attention from re-

searchers, and many valuable contributions to fuzzy system theory have appeared.

The reader interested In general monographies about fuzzy sets and systems is

addressed to the books by Negoita and Ralescu [103, Kaufmann [91 and Dubois and

Prade [3].

However, no work has yet been published dealing with the specification of fuzzy

systems. Our paper is presented as an initial attempt to Investigate this problem.

Although HOS is not the only existing methodology for the specification of large

computer-based systems, It seems that, based on the notion of function, HOS is a

strong candidate to begin investigation into this problem.

After a presentation of the basic theoretical constructs used in HOS - data types,

functions and control structures - several important notions of fuzzy set theory,

such as fuzzy function; are reintroduced and discussed. Different kinds of fuzzy

data types, as well as theIr consequences for control maps, are then described.

Finally, the problem of reliability of fuzzy systems is considered.

*Before beginning, it must be emphasized that "fuzzy specification of systems" and

specification of fuzzy systems" do not mean the same thing. "Fuzzy specification"



can be desciHbed as "approximate" or even "l.ncomplete specification" (which Is not

a good means of obtaining a reliable system), while "specification of fuzzy systems"

refers to the specification of systems which have a behavior only approximately

known or which are too complex to be described in great detail.

11I. MAIN CHARACTERISTICS OF HOS

The specification of computer-based systems In HOS Is done independently of imple-

mentation. The software system Is formalized In terms of three theoretical

constructs:

- data types

functions/operations
-control maps.

A data type, roughly speaking, represents the kind of entities that the system under

,consideration manipulaTes, or, in other words, operates on or produces. A type of

value, though, has no meaning by Itself. The set of operations which are usually

performed and the set of axioms which these operations must satisfy determine the

meaning of the data type.

Thus data types of algebraically specified in HOS. i da-a type consists of C8]:

- a set of objects, called Its members;

- a set of functions, called its primitive operationb, whose domaoins and

ranges w'1e specified. Either the domain or the range of each primitive

* operation must include (possibly within some Cartesian product) their own

set of members of the data type; and

- a set of axioms which describe the way the primitive operation interact

with one another and perhaps with other functions.

The concept of data type has been extensively discussed by Cushing in [I]. Several

examples are provided In EI],.such as "Stack" or "Time".

Moreover, each data type has, as a member, an ideal element, namely REJECT, which

Is the output of any operation when It has no genuine output of the expected sort
(i.e., when some members of the domain of the operation are not ampped onto members l
of the range). In AXES C6], which is b Specification Language based on HOS

methodology, six very general data types are prespecified: Boolean, Property,
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Set, Natural Numbers, Integer amd Rational Number. They are the intrinsic types of

AXES. The functions (or operations) are thus the entities that operate on or

produce members of data types.

Control structures determine how a function relates to those into which It Is de-

composed. Obviously only non-primitive operations can be decomposed by means of

control maps. If a desired function on a type cannot be defined In terms of pri-

mitives, it must be added to the operation specification of the type, thus creating
a new data type: AXES, however, al lows us to write functions (whnich are repre-
sentable as control maps) also as derived operations: they are then characterized

by assertions that specify their Interactive behavior with other functions (which

have been already characterized).

There are three primitive control structures which are used in HOS: (see F83,[I3)

- composition

y=h(x) Accession For

NTIS GRA&I
DTIC TAB El
U nannounced

yug(z) zuf(x) Jus tit± iation..

- set partition: . _Distribution!/
y= ( Availability Codes

'Av' ILl and/or
Di,%" I SPocial

P~x)x)

y=f'(x) y=f''(x) .I

where P Is a predicate defined on the domain of f. (P and "1 P Induce

a partition of this domain.)

- class partition:

y.,(y1 ,y 2 )--f(x) with x=(xlx 2 )

Yl=g(x 1 ) Y2 =h(x 2 )
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A system whose control structure is decomposable in terms of these three primitive

control structures is guaranteed to be reliable In the sense that the six axioms

on which HOS Is based [4] are then satisfied. (These axioms, which must not be

confused with the akioms of a given data type are derived from a set of empirical

data and considerations.) AXES [6] Is'able to express a specification in a form

which Is equivalent to an HOS control map. A representative application of HOS

methodology may be found in [7], where a very complex system In analyzed and
specified.

III. FUZZY SETS AND FUZZY FUNCTIONS

Because. HOS methodology attempts to ddf i-ne a system as a function, the concept of

fuzzy function seems to be necessary to deal with any fuzzy extension of HOS.

Surprisingly, there are very few published works devoted to this topic'in the

f set literature Some of the ides presented here have explicitly appeared

for the first time in [3] (which Is not available yet).

After a.'br.ief recall of the difference between fuzzy set and possibility distribution

d and of the notion of fuzzy relation, three general kinds of mappings, gaihered under

the label "fuzzy functions" are Introduced. The composition of these different

fuzzy functions Is described. The notion of the fuzzy partition of a set Is then

presented.
I. Fuzzy Set versus Possibility Distribution. Fuzzy Relation.

Let X be a universe and A be a fuzzy set on X. A Is viewed as a subset of X without

precise boundaries. For all xcX, -pA(x) is the degree of membership of x to A.

The fuzzy set A is thus defined by the pairs

(x, 1A(X)), x CX

It is assumed here that the valuation set is the Interval [0,1], i.e., WeA(X) [O,I].

*Let v be a variable which takes Its values on X. If E is a non-fuzzy subset of X,

to say that v Is an element of E Indicates that any element In E could possibliy be

a value of v. In this way, the statement "v Is an element of E" induces a poissibility

distribution 7t over X which associates to each xcX the possibility II(v-x) that

x is that value of v.
I If x e E

TI(v=x)=z (x)= 0 otherwise.
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This point of view may be.extended to a fuzzy set A in the following way:

'](vux)=iH(x)=IA(x) "

* Thus a fuzzy set Induces a possibility distribution. A is said to be a fuzzy

restriction on the (possible) values of v. The concepts of possitility and of

t1 possibility distribution, which must not be confused with those of probability

and probability distribution (there is no additivity axiom in possibility theory),

have been recently Introduced by Zadeh in [14].

Let us consider an example. X is the real IlniTR. A fuzzy number R on7R Is a

fuzzy set on1R,,such that:

- Its membership function f is continuous;

- r Is normalIzed: 3 m 9•, i(m)1=;

-n is convex: V xe rR, Vz CTR, VyeEx, z], 1if(y)5 min(w_(x),gIW(z))

m may be viewed either as a fuzzy set of real numbers clustered around m, or as a

possibility distribution on the value of some ill-known quantity.

A fuzzy relation R on the Cartesian product XxY is a fuzzy set on XxY:

((x,y), p R(x,y)), xeX, yYE .

PR(x,y) may be viewed as expressing the strength of the link from x to y.

2. Fuzzy Functic•ns / Fuzzy Operations.

Classically a function f Is a many-one correspondence between two sets, namely the

domain X and the range Y or the function: For all xIX, there exists at most one

ycY such that yxf(x). If there are several y such the yof(x), f is just a relation.

"Fuzzy function" can be understood In several ways according to where fuzziness lies.

From an interpretative point of view, three main types of fuzzy functions may be

considered:

- ordinary functions having fuzzy properties or satisfying fuzzy constraints;

- functions which just have fuzzy arguments and fuzzy'values, without being

fuzzy themselves; they are ordinary functions between sets of fuzzy sets.

- ill-known functions which even map non-fuzzy arguments on fuzzy values.

From now on, the expression "fuzzy function" will be used only for this

last kind.

_ " 4 L ... .4 - * . .".. . .. . 1 11 I II Il..... - * . =7;.; . ...TI '-,N C " -' ' ' "," "l..-l :•



Hybridation between these three basic types are possible.

N.B. Functions which map fuzzy arguments on non-fuzzy values, for instance, the

-function

(fuzzy parts of TR):S7-(1R) - lR
m - In f{m, •(m)=

are not considered in the following. These functions "defuzzify".

The three kinds of functions related to fuzziness are now reviewed.

a) Fuzzily constrained functions:

This kind of function was first considered by Negoita and Ralescu '103.

Let f be an ordinary function from X to Y. Let A and B be two fuzzy sets of X and

Y respectively. A and B are referred to respectively as the fuzzy domain and the

fuzzy range of f if and only If:

(I) V xcX, such that f(x) Is defined, 1B.Ef Nx)]O PA(X).

Let us consider an example (taken from [33):

"Big trucks must go slowly.": X Is the set of trucks, Y Is a set of speeds, f

assigns a speed limit f(x) to each truck x. A are the fuzzy sets of big trucks

and low speeds respectively. The above inoquality means: "The bigger the truck,

the lower Its speed limit." It Is shown in [3] that proverbs having the same

syntactic structure as the above regulation may be also model led by functions with

fuzzy domain and fuzzy range.

The composition of such functions is very easy. Let g be a function from Y to Z

wIth a fuzzy domain B and a fuzzy range C such that PC[g(y)J •B(y) where yvY.

Then go f is a function from X to Z with a fuzzy domain A and a fuzzy range C since

UB[f(x)] •:PA(x) , i EC[g(y)] >_.B(y) and y=f(x)

entail I11c[(g 0 f W3 ]PA(X),

N.B. More generally, the composition of g with f yield a function with a fuzzy

domain qnd a fuzzy range as soon as the fuzzy range B of f is included in the fuzzy
range B' of g, I.e., i,,(y)?1p B(y) with y=f(x).

_fuzzy
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Binary operations are particular cases of functions. They are mappings from a

Cartesian product X(xX to a set Y (possibly equal to X). Let us denote by * such

an operation. -Before Negoita and Ralescu [10] considered the above notion of
fuzzily constrained function, Rosenfeld [11] had Introducedthe following defini-

t.ons, when Y=X:

e A fuzzy set A of X Is closed under * if and only If

(2) V xI cX, Vx 2 eX, 1A(X *x2 ) >mln((VA(xl),1VA(X 2 ))

which is exactly the same as the Inequal'ty (I) for the fuzzily constra!ned func-

tions, as the Cartisian product AxA Is defined as

((xlpxj), min(lIa(Xi)NMA(xJ))), x eX, XJCX.

* If (X,*) is a group, A Is a fuzzy subgroup of X if and only If the above
Inequality (2) is satisfied and VxeX, e A(X ))•A(x) holds, where x-xe and e

is the Identity.

The last inequality means the mapping x-@-x Is a fuzzily constraint function.

By symmetry it entails v A(x )"'A(x)

N.B. If X Is a real Euclidean space, let us consider the operation-

xI x2=XX +(I-X)x 2 with Xc[0,1i. We see then that the condition of convexity of

a fuzzy number I is nothing but the fact that M Is closed under jX, V X)[O,13.

Remarks:

I. The same approach allows us to define fuzzy properties such as fuzzy injectivity,

fuzzy surJectivity, fuzzy continuity for an ordinary function (see [3]). Let us

give, for Instance, a possible definition of the fuzzy surJectivity: f from X to Y

is said to be fuzzily surjective on the fuzzy set B of Y If and only if

(3) V yeY, 3xeX, pR(yf(x)) >_(y)

where 1R is a fuzzy relation of proximity on Y (i.e., reflexive: p (V,y)=l,

VycY, and symmetrical

I.IR(YY' )VR(Y'Y), V y cY, VY' cY). 4

(3) means "the more y belongs to 3, the closer Is a neighbor of y which has an

antecedent x in the sense of f" ([3]).

" . I
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2. Instead of considerlng a function f with a fuzzy domain A and a fuzzy range B,

It may be Interesting to deal with functions having just a fuzzy domain A on X and

no constraint on the range Y. However, f Is still fuzzily constrained in the sense

of (I) because IJY(y)=l >iJA(x) with y=f(x). Then the image of A by f is the fuzzy Li
set: su (y.f (X)*/

(Ox,y=f(x) VA C

If,9'x such that y=f(x), then the membership degree of y to the fuzzy Image of A Is

zero. 1A(X) may be Interpreted as the degree to which f Is applicable to x. hls

Similarly if f has an ordinary dconain X and a fuzzy range B on Y ((I) no more holds),

where 1J(y) is Interpreted as a degree of "acceptability" of y,

{(f(x), iB(f(x))), xeX I is the acceptable image of X by f. A

If f has a fuzzy domain A and a fuzzy range B, the acceptable image of A by f Is

the fuzzy set (using the operator "min" for the Intersection of fuzzy sets):

y, min sup I A(X) I PB(y) , yeY
xy=f(x) I

which is equal to (if (I) holds):

(y, sup W CY

i.e., the Image of A by f is accep';able.

Lastly, If 1-he fuzzy domain (or the fuzzy range) !s defined as a fuzzy set of

ordinary sub-domains (or subranges), say AI, ... ,Am:

A={(1j(i),A1 ), i=,m} AICX

then A may be reduced as

A : x," max I) x•X

i,xe:A1

or A = { (x, min (i)) , xeX } for examples.
I,xeAi.

...............
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3) Ordinary functions between two sets of fuzzy sets:

Let f be an ordinary fun tion from X to Y. This function may be extended as a

function F fromAX) to Y)#(X) denotes the ordinary set of the fuzzy sets of

*X). The membership function i•- of the fuzzy set /=F('), where x denotes a fuzzy

set of X, Is given by the extension principle (see Zadeh E133:

.(4) -) (y)= sup uI f (X)

xef (y)

()is :o omlydffrn rmt e defnitio15of the Image by f of Its fuzzy

domptn A, but here the point of view is different. We are no longer Interested

.l-.bal image of a domain, but rather In the Images of fuzzy points, fuzzy

' -he domain of f. R may be Interpreted as a possibility distribution of

. va.- nossibly clustered around some mean value.

STho -Ict.n uf F to X is f. Moreover, It should be noticed that the image of

a *uz!y L' T-ro (X,x) Is (X,f(x)), where X denotes a membership value.-

n 1.1 of the operation * (4) is written:

(5) V_-(y)- i(y)= sup min(p(x),V (x1))
y

X•x' ,y=x*x'

where * Is the operation from,*X))&X) to. Y), Induced from . The addition

of fuzzy numbers can be defined using.(5), for instance. (See Dubois and Prade,

[2,[33').

The composition of two extended functions F from MX) toaY) and G fromrn.Y)

tcffZ) respectively Is the extension H of the composition of the original func-

tions f and g.

9L i I-"



Proof:

G(F(R)) (z) =1G (7) (z)= sup jig (y) sup p F•) ()
yeg-' (z) yeg- (z)

.sup sup I- (x) = sup R (x)==H11 )(z)
yeg'(z) xef (Y) xe(g.f) ((z)

It should be clear that all the ordinary functions fromYTX) toMY) are not

extensions of the ordinary functions froin X to Y.

y) Fuzzy function of a non-fuzzy variable E3]

Two points of view will be successively devaloped:

- the image of xeX is a fuzzy set f(x) of Y

- x is mapped in Y through a fuzzy set of functions.

i) Jiggling functions:

A Jiggling (or fuzzifying) function from X to Y Is an ordinary function from X to

Y : x

The Image of Y, Is blurred by the ,Jiggling" of the function. f(x) may be also

of as a possibility distribution of a non-fuzzy Image of x.

The notion of Jiggling fUnction Is equivalent to that of fuzzy relation. f is

associated with a fuzzy relation In R such that:

(6) V xeX, V yeY, p )(Y)=uR(xy)

The composition of Jiggling functions Is defined by

(7) o(• x)(z)= sup min (~"x) (Y)I (y)(z))

where Issa jiggling function from Y to Z.

This composition may be interpreted as follows: given an Intermediary point y,

the membership of zeZ In (gOf)(x) Is bounded by the memberships of y In f(x) and

z In §(y). The membership of z In (g60)(x) corresponds to the best Intermediary

point.

10
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This composition is different from he cl~ssical composition of functions, as

f and g, being functions from'X toAY) and from Y tOZ), cannot be. composed

together,

A. fuzzy binary operatlon on X is a jiggl!ng function from XxX toCITX).

Remarks:

I. Jiggllng functions may have fuzzy dcmaln A and fuzzy range B In the sense of O):

(8) sup min (hJ(x)(Y),l•(x)) <1_.3 (y), V y.

xCX Vx A

When f(x) is non fuzzy, I.e., 31 y*, p-(x)(y*)=l and V y~y* p(x)(Y)=O,

(8) gives back (I).

Using (7), one may prove that if • has B as a fuzzy domain and C as a fuzzy range,

then °7 has A as a fuzzy domain and SC as a fuzzy range. Negoita and Ralo'scu [10],

who considering (8) in the framework of fuzzy relations, also Introduced fuzzy

relations (I.e., Jiggling functions) such as:

(9) )AR(x,y)=jjf(x)(y)<_, min (PA(x),IB(y))

(The link between x and y cannot be stronger than the degrees of membership of x

and y to the domain and the range respectively.)

If B Is normalized, by using (7) It can be proven that jiggling functions with

fuzzy domain and fuzzy range in the sense of (9) can also be composed.

2. Jiggling functions may be extended In the sense of l3): f, whichIs a function

from X to;Y), is extended in -, which is a function fromAX) toNY) by:

(10) 1(•)(y)= sup Rjin (i(x),• ()(y))
xcX

One may verify that

11(-())(z)= sup min (V(x),N)( 0)(×)(z)) .Gmx) xCX •) ' .

This shows that the extension of •0? defined by (7) and (ll)is nothing more than

the ordinary composition of F and G, functions fromr-(X) togAY) and from.r Y) to

AZ) respectively.

I I Il ,:



.Lastiy., It must be pointed out that there ordinary functions frompX) tqoY)

which are not extended Jiggling (or not jiggling) functions). See £3].

ii) Fuzzy bunch of functions

A fuzzy bunch 9'T-f ordinary functions from X to Y is a fuzzy set of YX: each

function f from X to Y.has a membership degree i4 'f) In f9. A Jiggling func-
tion f may be viewed as a fuzzy bunch (see [3]). A fuzzy bunch, though, is not

canonically reducible to jiggling functions, since there may be two functions f

and g from X to Y such that:

3 x, f(x)=g(x)=y with v '917 f) pi '(g).

The degree of membership of y to the fuzzy Image of x by 7'may then be ambiguous.

This can never happen with a jiggling function as the membership degree of y to

f•x) Is uniquely defined by p1(x)(y)=vRýx,y). A fuzzy bunch may be considered as
a multimodal fuzzy relation.

Let,9'and O'be two fuzzy bunches from X to Y and from Y to Z respectively. The

composItionM==-, O is defIned by

0J) 1 l h)= sup min (W,9(f),hp g))

f,g
h=gof

(11) generalizes (7).

3. Partition and Fuzzy Sets.

For the sake of slmpliclty, only partitions in two parts wll be cqnsidered.

Let A be a fuzzy set of X and P an ordinary predicate on X, P Induces a partition

on X: the set of elements xeX s.uch that P(x) Is true and the set of elements

xtX such thatIP(x) is true. In the same way.A Is partitioned in A and A2 such
•that

i N) If P(x) Is true VA ( A(x) -s1P(x) is true

0 otherwise 0 otherwise

12



Let us now consider the fuzzy partition of a set, namely X. Let P be a fuzzy

predicate. The truth-value, v(P(x)) of P(x) belongs to [0,1]. ThusP

induces a fuzzy set Q:

IIQ(x)=v(P(x) )

The complement • of Q is

li_(x)=l-v(P(x))-v(-) P(x) .

Q

Q and •are overlapping, and (Q,q) Is not an ordinary partition of X, but rather

only a fuzzy one*:

S W(x).=min (jiQ(X),D-PQ(X))O'0 if 1JQ(X)Wi or 0

in t(x)=max (PQ(X),l- Q(X)) if (X l or 0

N.B. In the sense of the operators fl and U of bold Intersection and bold
union:

""A ana Brttimax (OPA(X)+UB(X)-)

,AUB(x)=mln (II ,(X)+B( W)

(Q, 7) Is a pa rtlIt Ion: Q 01• Q; W=X

4. Concluding Remarks about Fuzzy Functions and Operations.

There are basically two kinds of functions or operations Involving fuzziness:

* Those functions and operations which operate on and produce fuzzy sets,

values or numbers in a non-fuzzy manner: e.g.,

- the extension In the sense of 2.1. of any function from7R- to R;

- the operations of union' intersection, complemer-ttations on

fuzzy sets;

- the addition and the multiplication of fuzzy numbers.

13



* The fuzzy functions and fuzzy operations which, operating In a fuzzy

manner on fuzzy or non-fuzzy quentitites, produces fuzzy ones. The Jiggling

functions and the fuzzy bunches of functions Introduced In 2.y. are of that

kind; e.g.,

- a function-which Increases x sligntly:

IR- (1T)

where i is a small fuzzy number'and (D Is the symbol of the extended

addition. ý Is the possibility distribution of results got from x

by Increasing It slightly.

- a fuzzy 'operation ohIR: to approximately take the arithmetic mean

of two real numbers x and y:

x*y=x 0 XDy 0(DX) =-z

wheree0 denotes the extended multiplication of fuzzy numbers and

(0 the extended substraction. i is a fuzzy number such that

I Is a possibility distribution of values clustered
around (x+y)/2i

Most of the functrons Involving fuzziness introduced In V.2. have been considered

In t,'e framework of category theory. For Instance, functions considered in 2.%.

satisfying (I), In 2.y. with (8), and in 2.y. satisfying (9), correspond to the

morphisms of categories Set(L), Set (L) and Setf(L) respectively. Moreover,
g fCL

the dichotomy discussed in this remark corresponds to the difference between:

- ordinary categories of fuzzy sets and

- fuzzy categories.

Two, points of view corresponding to fuzzy bunches and Jiggling junctions exist

concerning fuzzy categories. See Negolta and Ralescu Ell] for details. Also

see E33 for a short survey.

Although the link between categories and HOS representation has been recently
emphazised (see "A Note on Arrows and Control Structures: Category Theory and
HOS" by S. Cushing In C83), it has seemed preferable to present here the

14
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functions Involving fuzziness In " more elementary way as sophisticated forma-

l isms are not penhops su'Itable In working with concepts at this early stage of

K. development.

IV. HOS METHODOLOGY AND FUZZY SETS

,Let us begin with the question: "What Is a fuzzy data type?": Naturally there

are several kinds of "fuzzy data types", more or less fUzzy, depending on
where fuzziness lies.

First, only the members of the data-type may be fuzzy entities.. The primitive

and derived operations, though, are ordinary ones. The axioms are also of a
classlcal nature. We have, for Instance, the data-type "Fuzzy.Set" (which Is

different from the data-type "Set"), which Is also a data-type In the ordinary

sense. It corresponds to the non-fuzzy manl'pulation of fuzzy quantities.

Control structures are always the same.

A little more fuzzy givws the concept of fuzzy rejecrion. Fuzzy rejection

corresponds to the ordinary functions equipped with a fuzzy domatn A on X
'(see V.2. ). It means that all the elements of X are not equally sultable

as inputs of the function under consideration. Thus each x is rejected with

a degree equal to l-PA(x) (if IA(x)=O the output of the function Is theclassical

REJECT). The fact that a function has a fuzzy domain is compatible with the set

partition control structure (see- V .3).

Already intrinsically fuzzy are the data types where some primitive operations

or functions are fuzzy (i.e. are jiggling functions In the sense of V .2.13).
The members may or may not be fuzzy. The axioms are classical ones: it is not

because an operation Is fuzzy that It Interacts In a fuzzy manner with Itself or

other ones. Two examples of such operations were given In 111,4 . Jiggling

functions/operations maybe viewed as ordinary functions, symbollically from X to

(Y). It Is as jiggling functions from X to Y, though, that these functions are

composed by formula (7). Formally, we have the abstract control structure:

Z=F(x)

Z=Vy) ýfx

15



(7) may be formally rewritten as

H(x,z)= sup min (G(y,z),F(x,y))
yrY

which may be decomposed In ordering control maps provided that we have the

primitive operations "mln", and "sup" of a given function on a given domain.

Lastly, the axioms of a data type may be themselves fuzzy, even if the operations

or/and the members are not fuzzy. What is a fuzzy axiom? It Is a fuzzy descHip-

tion 'of the way operations are all6wed to Interact with one another. The

description Is fuzzy because the allowed Interaction is supposedly Ill-known.

For Instance, we may say that the operation * Is approximately commutailve If

A*B Is approximately equal to B*A for all A and B where "approximately equal"

Is model led by a fuzzy relation. * Is approximately commutative In another

sense If A*BnB*A for most of the A and B. Fuzzy axioms are linguistic state-

ments on the allowed Interactions of the operations. Linguistic statements can

be r,--resented using possibility distributions - see Zadeh's PRUF E[8]. It

seems possible to develop fuzzy mathematics by starting with fuzzy axioms and

using approximate reasoning (see Zadoh.E17]). Fuzzy mathematics is fuzzy manip-

ulation of entities and Is completely different from mathematics of fuzzy sets,

which is simply classical mathematics (ordinary manipulation) of "new" entities -

the fuzzy sets. In the framework of elementary geometry, Zadeh, in Part C of

[15], has given some examples of "fuzzy mathematics".

Thus, there are several kinds of fuzzy data types as members, operatlons, and

even axioms may be fuzzy Independently of each ot '.

V. FUZZY RELIABILITY

What Is classical reliability? Let us quote Margaret Hamilton and Saydean Zeldin [5]:

"For a reliable syste.m Is a predidtable system; It does exactly
what It Is Intended to do. In attempting to define a system as
a function, we already have Incorporated an element of reliability
In that we assert that for every value of "x" we expect to produce
one and only one value for "y". That Is, we expect the system to
predictably produce the same result each time we apply f [y=f(x)]
to a particular value."

It Is clear that the functions involving fuzziness which have been presented In

V.2.a and V.2.0 are reliable In the above classical sense.
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Obviously, It Is not true for the Jiggling functions or the fuzzy bunches. Let

us consider a jiggllng function f from X to Y. The Image of x by f Is ý=•(x).

If we regard ' as a fuzzy set (I.e. we consider f rather as an'ordinary function

from X to '(Y)), f Is re-liable In the ordinary sense:

V xeX, 3I' (orj ') such that '=f(x).

If - Is viewed as a possbility distribution on the value of the non-fuzzy output

y of f when the Input Is x, though, f Is no more absolutely reliable, as we have

only an approximate Idea (modelled by f) of the more or less possible outputs of

f when the Input Is x. It is from this point of view that the jiggling functions

are composed by' (7). 'It is then only possible to speak of fuzzy reliability as

the behavior of the function Is only approximately known.

VI. CONCLUDING REMARKS

HOS methodology seems to be a good guldeline to Imagining what may be the

specification of fuzzy systems. Even If some of the concepts presented In

section V seem totally removed from logic as we apply It today, we should

keep in mind that people, on the whole, tend to cling to many preconceived ideas

concerning the structure of mathenaticsand how to use It to solve the problems

of today. If we can open-mindedly look at these problems with fuzzy concepts

and approaches within our sights; we might be surprised to see that complex

and difficult questions may be easier to grasp when presented In a fuzzy way.

Obviously, this is particularly true In the field of soft sciences.
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